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We modify a recent theory of Longuet-Higgins (1989a, b )  to study the resonant 
interaction between an isotropic mode and one or two distortional modes of an 
oscillating bubble in water when the isotropic mode is forced by ambient sound. 
Gravity and buoyant rise are ignored. The energy exchange between modes is strong 
enough so that both (or all three) can attain comparable amplitudes after a long time. 
We show that for two-mode interactions the mode-coupling equations are similar to  
those studied in other physical contexts such as nonlinear optics, coupled oscillators 
and standing waves in a basin. Instability around fixed points is examined for 
various bubble radii, phase mismatch, and detuning of the external forcing. 
Numerical evidences of chaotic bubble oscillations and sound radiation are discussed. 
It is found that in a certain parameter domain, Hopf bifurcations are possible, and 
chaos is reached via a period-doubling sequence. However, when there are three 
interacting modes, each of the two distortion modes interacts with the breathing 
mode directly and the route to chaos is via a quasi-periodic 2-torus. Possible 
relevance of this theory to  the observed erratic drifting of a bubble is discussed. 

1. Introduction 
A well-known phenomenon in bubble dynamics is the erratic drift of a bubble in 

an ambient sound field when the latter exceeds a certain threshold (Strasberg & 
Benjamin 1958). This phenomenon has been attributed to the subharmonic resonance 
of a shape-distortion mode with the isotropic breathing mode. A linearized theory of 
such resonance based on the Mathieu equation was proposed by Benjamin & 
Strasberg (1958) and Eller & Crum (1970). Subsequently Hall & Seminara (1980) 
gave a nonlinear theory by allowing the amplitude of a distortion mode to be 
O(e) < 1 (O(& in their notation), and the breathing mode to be O(e2). Neglecting all 
damping mechanisms, they deduced a cubic evolution equation for the complex 
amplitude of the distortion mode, valid over the timescale O(e2wt) = 1, where w 
denotes the frequency. The breathing mode only acts as the background excitation 
and does not take part in the nonlinear evolution. Bifurcations as functions of the 
detuning frequency were examined. Since the complex equation corresponds to a 
first-order dynamical system with just two real degrees of freedom, no chaos was 
found. 

Recently Benjamin & Ellis (1990) derived a formula for the drift velocity of an 
oscillating bubble as the consequence of second-order interactions between two 
neighbouring distortion modes. They also described new experiments showing the 
erratic drift. Since chaos is known to occur in the subharmonic resonance of standing 
surface waves in a basin (Gollub & Meyer 1983; Ciliberto & Gollub 1985; Feng & 
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Sethna 1989; Meron & Procaccia 1986; Simonelli & Gollub 1989; Kambe & Umeki 
1990), they concluded by analogy that two neighbouring distortion modes of a 
bubble may also be chaotic, resulting in erratic drifting. A direct theory for the 
chaotic bubble oscillation to substantiate this conclusion is therefore desirable. Since 
at high modal numbers, two neighbouring distortion modes have nearly the same 
frequencies, they can be simultaneously resonated by ambient sound through the 
breathing mode. In  principle it appears possible to extend the theory of Hall & 
Seminara (who focused their attention to the lowest mode with n = 2 )  to two 
distortion modes n and n +  1 with large n, and derive a dynamical system with four 
degrees of freedom. Chaotic responses similar to those examined theoretically by 
Meron & Procaccia (1986), Feng & Sethna (1989) and Kambe & tJkema (1990) are 
highly likely. This mechanism, if proven, would then be a powerful one, since the 
breathing mode could be an order of magnitude smaller. On the other hand the 
growth rate would be rather low and the band of frequency mismatch must be very 
small ( ( ~ , - u % + ~  = O ( 2 w ) ) .  

As in standing waves in a basin (Kambe & Umeki 1990), there can be several 
mechanisms for parametric bubble resonance. Motivated by acoustic sensing of 
breaking waves on the ocean surface, Longuet-Higgins ( 1 9 8 9 ~ )  has examined the 
opposite problem, i.e. how shape oscillations of a bubble with natural frequency un 
can excite the breathing mode which radiates sound at  2un. This is a second-order 
theory of second-harmonic generation by quadratic coupling. Longuet-Higgins 
(1989b) also gives the transient solution for given initial shape distortion and 
calculates the damped oscillation of the second-order breathing mode, and the 
radiated sound. Various damping mechanisms have been included : acoustic, thermal 
and viscous, so that the amplitude of the breathing mode is finite even if the 
resonance condition, w = 2a,, is satisfied exactly, where un is the natural frequency 
of the nth distortion mode. At resonance. the amplitude is inversely proportional to 
the total damping. Let the dimensionless damping coefficient be denoted by P / w  so 
that the amplitude decays as exp(-Pt) in the linear theory. It is known (e.g. 
Prosperetti 1977) that  the range of the combined damping coefficient is P = lo5 to 
lO(l/s) for a bubble with radius ranging from 0.01 cm to 1 cm. The range of 
frequency of common interest in ocean acoustics is very broad: O(100 Hz) to 
O( 100 kHz). Thus for sufficiently high frequency and large bubbles, damping can be 
very low. When persistent forcing is present the isotropic mode can be resonantly 
amplified to the extent that a second-order theory may no longer be sufficient. A 
nonlinear theory allowing both interacting modes to be of first order is therefore 
needed, and it would lead to another mechanism of parametric resonance. 

Transient problems of quadratically coupled oscillators have been studied before 
in other contexts. Acelebrated example is in optics (Armstrong et al. 1962), where for 
general initial conditions and negligible damping, energy can be interchanged 
periodically between the first and second harmonics (w  and 2 w ) .  Later studies of 
forced resonance of quadratically coupled oscillators with linear frequencies w1 and 
w2 include the works of Sethna (1965) who analysed the equilibrium states (fixed 
points) and their stability. Hatwal, Mallik & Ghosh (1983) found numerically and 
experimentally signs of chaotic motion and suggested statistical representation of 
the results. Miles (1984) carried out a more systematic search for chaos. While the 
frequency wf of external forcing can be close to either w1 = 2w2 or w 2 ,  Miles focused 
his attention on forcing near the lower w2 only. For a special set of parameters which 
corresponds to exact phase matching, i.e. w1 = 2w2,  he did not find a chaotic response 
for wf - w l .  However, for a mathematically similar problem of standing gravity 
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waves in a basin, Gu & Sethna (1987) have shown that Hopf bifurcations and chaos 
can occur if slight phase mismatch is allowed, i.e. w1 x 2w,. 

With a view to finding chaotic subharmonic resonance we modify the work of 
Longuet-Higgins by including external forcing and by allowing the resonant 
responses of both interacting modes to be eventually comparable (i.e. both are of first 
order, in the normalized sense to be explained). Assuming that gravity is negligible 
so that the effects of buoyant rise are unimportant, we first show that the long-time 
evolution equations for the complex amplitudes of the two modes are of the same 
type as those studied by Armstrong et al. ,  Sethna and Miles. But for a bubble it is 
the forcing at  the subharmonic frequency that is of physical interest here. Moreover, 
for an increasingly large bubble the natural frequencies of the distortion modes can 
be close, so that parametric resonance may involve more than two modes. Some 
consequences of three-mode interactions are studied here also. Since in nature, 
physical parameters such as the bubble radius may not correspond exactly to perfect 
phase matching: w = 2a,, chaos may therefore arise and is examined here. 

Chaotic oscillations of bubbles were first shown in the pioneering works of 
Lauterborn and colleagues who studied isotropic modes of a spherical bubble with 
finite oscillation amplitude (see Lauterborn & Partilz 1988 for a review). The present 
work suggests that simple harmonic forcing can also excite chaotic oscillations of the 
isotropic mode through its interaction with one or more shape modes, and therefore 
can also lead to radiation of random signals to the far field. Combined with the theory 
of Benjamin & Ellis (1990), it also provides a possible basis for erratic dancing of 
bubbles in sound. 

2. Order estimates 

radius R without surface tension. 
For reference we cite the well-known resonant frequency of an air-filled bubble of 

(Minnaert 1933), where Pb is the air pressure in the bubble, y is the ratio of specific 
heats of air, and p is the water density. Thus the ratio of bubble radius to sound 
wavelengthl2.n is 

Taking C = 150000 cm/s, y = 1.4, p = 1 g cm3 and Pb = lo6 dynes/cm2 (or lo5 Pa), 
we find k R  = 0.01368. Assuming that a bubble is excited by an incident sound wave 
of displacement amplitude A ,  then a t  resonance we can have A / a  < 1, where a is the 
amplitude of bubble oscillations. From the linear theory it is well known that, owing 
to radiation damping which is of O ( k R ) t ,  the amplitude ratio at resonance is of the 
order 

A l a  = O ( k R )  O ( C )  < 1 .  (2.3) 

On the bubble surface the first-order oscillating quantities are characterized to be of 
O ( a / R )  and the nonlinear effects of O ( a / R ) 2 .  I n  the incident sound the first-order 

t For the bubble size of interest here, the radiation damping is of the same order of magnitude 
as the total damping. 
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perturbations are measured to be of O(kA) and nonlinearity of 0(k-4)2.  The ratio of 
the two nonlinearities is very small: 

2 
- (kA )2  = ($ (kR)2 = O(e4) 4 1 .  

Therefore we can ignore nonlinearity in the far field of sound while considering the 
nonlinearity on the bubble surface. The far field is sufficiently well described by the 
linear wave equation 

where @ is related to pressure and velocity by 

a@ 
p = - p p  v = V @ .  

3. Near field of the bubble 
In the near field r = O(R) water compressibility can be ignored with an error of 

O(kR) in the solution to be obtained. The velocity potential, denoted by v, is 
governed by 

For bubble oscillations of small amplitude, a/R + 1 ,  Longuet-Higgins (19894 has 
expanded the kinematic and dynamic boundary conditions about the mean radius. 
In the case of axial symmetry he gives, with second-order (a/R)* accuracy 

vzp, = 0. (3.1) 

1 
T t  - v r  = w r r - j j i  (TOVO) ( r  = R), (3.2) 

T T vt + 7 (2 + V,") 7 -Rwi  ?j = - wrt - $(Vv)'+ 7 2 ~ (  1 + Vt)  + ~i[q  -$(y + 1 )  q] 
PR PR 

( r  = R ) ,  (3.3) 

where 7 denotes the radial displacement of the bubble surface from equilibrium, T is 
the surface tension coefficient and V,Z is the surface Laplacian: 

The spherical average of 7;1 is defined by 

T = & r d $ [ q ( 8 , $ ) s i n B d 8  = -  x qsin8d8 

and wo is given by (2.1). Gravity is neglected here. 

Let 7) = E y 1 + E 2 ? j 2 +  ...; q = q 1 + e 2 P ) * + . . .  . 
The first-order approximation satisfies 

T l t  - v 1 r  = 0, 

vlt +y (2 + V:) vl -Rw: ?jl = 0. 
T 

PR 

(3.5) 

(3.6) 



Parametric resonance of a spherical bubble 33 

A homogeneous solution satisfying (3.1), (3.7), and (3.8) may consists of an isotropic 
(breathing) mode and anisotropic modes with latitudinal distortion : 

yl = a, e-i"t +a, P,(cos 0) ePiunt + *, (3.9) 
n+l R 

rpl = b, e-iwt + b, t) P,( cos 0) e-iunT + * (3.10) 

where * represents the complex conjugate of all preceding terms, P,(cos0) is the 
Legendre polynomial of order n, and 

ia, Ran 
n + l  

b, = iwRa,, b, = -. 

The eigenfrequencies for these modes are given by 

2T T 
w 2 = w 2 - -  a:= ( n - l ) ( n + l ) ( n + 2 ) -  

pR3' PR3 

(3.11a, b )  

(3.12a, b)  

(Lamb 1932). Although all modes n = 2 ,3 ,4 ,  ... can exist under general initial 
conditions, we shall first focus attention on the near-resonant interaction between 
the breathing mode and one of the distortion modes, say n, with w and u, satisfying 
the following near-resonance condition : 

w = 2a, +Awn G 2u, + swA,, (3.13) 

where Awn = swA, denotes the frequency mismatch for the chosen R, with A, < O( 1). 
Extensions to more distortion modes will be discussed later. Expecting the modal 
amplitudes a,, and a, to vary slowly in time, we introduce the slow coordinate 

t, = st (3.14) 

in ql and cpl through a, and a, in (3.9) and b, and b, in (3.10). As a result the second- 
order solution must satisfy the following boundary conditions on the mean bubble 
surface : 

(3.15) 
1 

"lzt -9'27 = " l1P) l r r -~TleP) l e - " l l t ,~  

T 
~ ) 2 t  +T (2 + V,") 7 2  --R4 72 = -7lTlrt - 3 V ~ 1 ) ~  

PR 

T 
+7(2111)  ( 1 + V , " ) " l l + w ~ [ ~ - - ( Y + 1 ) ~ ] - P ) l t , ,  (3.16) 

PR 

which are taken from Longuet-Higgins (19894 except for the last terms in (3.15) and 
in (3.16). The general second-order solution with axial symmetry about the polar axis 
can be formally written 

92 = c,+ C cnPn(COs0), (3.17) 
12-2 

(3.18) 

where c,, c,, do and d ,  are complex functions o f t  and t , .  The term J0 depends only 
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on t ,  and is needed to match with the far field. Substituting (3.17) and (3.18) into 
(3.15), we get 

( n + l ) R  ian ("'"TI a- +(a2 , e-2iu n +a,a,*) [ :  i(n+s)-P;- 

'a0 e - iwt  +-e dan -iu .P,]+*. t 

-[dt, dt, 
(3.19) 

In order to facilitate the tracing of the origin of each term, simplification via (3.13) 
is postponed until later. 

The spherical average of both sides of (3.19) gives 

da 
2iun e-2io,t +a,  .,*) 0 @It + *. -+-d ac, 1 --(aoe 2iw 2 -2 iwt  +a a ) 

at R O -  R ,* + ( 2 n + l ) R  dtl 
(3.20) 

Next, multiplying (3.19) by P,(cosB) and then taking the spherical average we get 

1 ac, n + l  d, +-- 2 n + l  at 2 n + l R  
-- 

Use has been made of the following identities: 

I P,(cosB)sinBdB = 0 

(0 if m + n, 

(3.22) 
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Similar but lengthier treatment of (3.16) gives 

_- a d ~  R @ 2 C o  = w2(aie-2i"t+a a ) - 4l (a: e-2iunt + a,a,*) 
at 0 o* + 2 n + 1  

4 uo a;) + (a: e-ziunt - a,  a,*) w2 2 -2iwt - +-(aoe 2 

1 1 -n-n2 
(aie-2iwt+aoa,*)+ 2n+ ( ~ : e - ~ ~ ~ f l ~ + a , a ~ )  

and 

w 2 + r ;  (n- 1) (n+2)  (w:-w2)  I W(T, 1 - a a e-i(w+a,)t  ~- [ 2n+1 2n+ 1 2n+ I o n  - 
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(3.23) 

(3.24) 

Eliminating do from (3.20) and (3.23), we get 

4 e-2iunt (2n+ l ) R  
a2co 4 ~ ~ 2 ,  (n-1) (n+2)  (4n- 1) 

( 0 ; - 0 2 ) -  [ (2n+ 1) R- 4(2n+ l ) R  - + w2co = x 
a t 2  

(3.25) 

where NST stands for non-secular terms which are not proportional to exp ( f iwt) or 
exp ( f 2ia, t ) .  For uniform validity in t we require the secular terms to vanish, i.e. 

(3.26) 

where the quantity in the square brackets in (3.25) has been simplified with the aid 
of (3.12) and (3.13). The same conclusion is reached if co is eliminated from (3.20) and 
(3.23) instead. 
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Similarly by eliminating d, from (3.21) and (3.24), we get 

- ( n - i )  (n+2)  ( ~ ~ - w ~ ) ] a , a ~ e - ~ ( " - " n ' ~  +NST+ *. 
(3.27) 

Removal of secular forcing terms leads to 

(4% - 1 )  ia, a, a; e-iwAntl + 2R - dun = 0. (3.28) 

Equations (3.26) and (3.28) describe the evolution of the complex amplitudes a, 

dt, 

and a,:  

where 

(3.29) 

(3.30) 

(3.31) 

The coefficient do remains to be found by matching with the far-field solution. Note 
that the near-field solution up to the first two orders is 

1 q~ = E [ b,-e- iwt + b, t)"" P,(cos 0) e-iunt 
r 

Pm( cos 0) + do e-iwt + *, (3.32) 1 
where b, and b,  are given by (3.11). 

4. Evolution equations 
The sound wave potential in the far field can be written 

1 
kr @ = E @ ~  + s2@, = a, - ei(kr-wt) +an P, h,( k ,  r )  eiknr-iant 

where k ,  = a,/C, and h, denotes the spherical Hankel function of the first kind 
corresponding to radiated waves. The coefficients B, and B, are allowed to contain 
O(B)  and O(e2)  terms. A plane incident wave with pressure amplitude p ,  and the 
frequency close to that of the breathing mode is included. Since the bubble is near 
resonance, we have assumed the incident wave to be at  most of order O(e2). 
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We now require that the near and far fields be asymptotically matched up to O(e2) : 

lim (ql +e2cp2) = lim (eQ1 +e2O,). 
rlR % 1 kr lR 4 1 

Matching (3.32) and (4.1), we obtain 

(4.2) 

Since for small k , r  

(2n- 1) !! 
(k, r),+l ' 

h,(k , r )  !.z -i where (2n-l)!! = 1 ~ 3 x 5  ...( 2n-l) ,  (4.4) 

it follows that 

b - - Bo - - iwRa, or B, = iwkR Ra, = O ( E ) ,  ( 4 . 5 ~ )  
- kB 

(2n- 1 )  !! 
or B, = O(en+l), (k, R),+l 

b, = -B, 

d,=-(F)oHn,+- .  - iP0 
PW 

(4.5b) 

(4.5c) 

Note from (4.5) that B, = O(e)  b, and B, = O ( k ,  R),+l b, for n = 2,3, . .. . This means 
that sound radiated from the bubble is only of O(e2), arising mainly from the 
breathing mode. 

With ( 4 . 5 ~ )  we finally obtain from (3.29) and (3.30) the evolution equations for a, 
and a,: 

where a frequency detuning is allowed in p,, 
- f i A w f t  = fOeiwRt, 

0 -  oe 

(4.7) 

with Aw, = swsZ and f o  is a complex constant. The second term on the right-hand side 
of (4.6) represents radiation damping. This pair of equations describe the forced 
resonant interaction of the breathing and distortion mode in a perfect fluid. Note 
that while quadratic terms are involved, this theory is concerned with the evolution 
of first-order amplitudes over a long time t, = ( E / w G ) w t  = O(1). 

In view of (3.31), Q," - un/4nR is small while Q, - 2nu,/R is large for large n. 
Thus a, must be large to affect a,, while a small a, can affect a,. It can be shown by 
repeating the matching argument that a plane incident wave a t  frequency u, w $u 
has no effect on these evolution equations at the present order of approximation, i.e. 
the distortion mode cannot be excited directly by the incident wave. 
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In real fluids additional damping can be contributed by viscosity and by thermal 
diffusion in the air inside the bubble. A detailed account of the viscous damping by 
the nth mode was givcn by Longuct-Higgins (1989b, equation 4.15). Let us define the 
radiation damping constant which is non-zero for the breathing mode, 

yH. = +wkR. (4.9) 

The viscous damping, estimated by a linear analysis. gives rise to the damping 
constant 

( n + 2 )  (2n+ 1 )  v 
R2 Y v n  = 

for the nth dist,ortion mode: and 
2 v  

Y v o  = 3 

(4.10) 

(4.11) 

for the breathing mode. As pointed out by Longuet-Higgins (1989b), (4.10) gives only 
an order-of-magnitude estimate. as the effective Stokes boundary-layer thickness is. 
for large enough n,  not necessarily small compared to the bubble radius, as is 
required by the approximation leading to (4.10). 

Damping due to thermal diffusion affects the breathing mode and has been 
estimated by 

(4.12) 

(Pfriem 1940, see van Wijngaarden 1972), where D = 0.2 cm2,/s is the thermal 
diffusivity in air. This corresponds to Eller's (1970) formula (2D/w)b/R 4 1 (see van 
Wijngaarten 1980). A more detailed theory for isotropic oscillations has been given 
by Prosperetti (1977) who showed that at resonance, the damping factors due to 
radiation and to diffusion are nearly the samc, while viscous effects are insignificant 
for a radius in the range of O( cm < R < O( 1) cm. 

To account for all these points, we modify (4.6) and (4.7) to 

where 

V 
y n  = ( n + 2 ) ( 2 n + l ) , .  R 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

If forcing due to the incident wave is absent, (4.13) and (4.14) are familiar in 
nonlinear optics where they describe the second harmonic generation of light of 
frequency 2vn when incident light of high intensity and frequency crn shines through 
a quartz crystal (Armstrong et al. 1962). They also arise in the theory of long waves 
in shallow water (see Mei & unluata 1972 or Mei 1989). If dissipation is also ignored, 
it is known that when both modes are initially non-zero, their energy can be 
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exchanged periodically in time. If the second harmonic (w  = 2un) is initially zero, 
then it can grow by draining energy completely from the first harmonic (v,). 

Equations (4.13) and (4.14) are limited to two interacting modes. As is evident 
from (3.12b), the distortion modes are quite dense in the (u,,R)-diagram. In 
particular, the frequency separation betwecn adjacent modes, 

v , + ~  - un x 3/n2an x 3/nw,  (4.17) 

can be as small as the resonance mismatch ewA, for large enough n. Therefore for a 
sufficiently large bubble the isotropic mode can interact nearly resonantly with not 
only the distortion mode with the closest 2a,&, but one or several of its neighbours. 
Since the distortion modes do not interact directly among one another, the evolution 
equations can be easily modified to 

where m denotes the distortion modes satisfying the ncar-resonance condition. 
Note however that a distortion mode must have non-zero initial value for it to take 

part in the resonant interaction. It is instructive and theoretically legitimate to first 
single out one such mode, and assume that all other neighbouring modes are initially 
absent. We therefore return to (4.13) and (4.14) for just one distortion mode, and 
introduce the timescale 

(4.20) 

where 21 f o l  is the amplitude of the incident sound pressure, and the following scaled 
variables : 

7 = t,/To, a0 = (s: Q,)  a,, & = [T,(Q: Q,)'] an. (4.21) 

Equations (4.13) and (4.14) then become 

(4.22) 

(4.23) 

where F is the normalized amplitude of the far-field pressure, and a complex number 
of unit magnitude. The other dimensionless parameters are 

For a fixed bubble of radius R near the sea surface, the values of damping constants 
y o / w ,  y , /w and the phase mismatch Aw,/w are fixed for a chosen modal number n. 
The effect.s of varying the forcing are through the detuning frequency Aw,/w and the 
amplitude parameter e /T , .  
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R(cm) n 
0.01 3 

4 
5 
6 

0.1 9 
10 
11 
12 
13 

1 .o 21 
22 
23 
24 
25 

a0 an 
0.136382 0.171 

0.264 
0.376 
0.508 

0.1366 0.1098 
0.123 
0.1459 
0.1788 
0.1976 

0.1366 0.0483 
0.0527 
0.0573 
0.0622 
0.0672 

i" 
4.645 
1.968 

-0.974 
-4.167 

1.719 
1.591 

-0.556 
- 1.523 
-3.416 

1.5 
0.898 
0.29 

-0.83 
-0.97 

Q- 

0.014 
0.049 
~- 

-0.49 
0.03 
0.035 
__ 

-0.67 
-0.69 

0.022 
0.041 
~- 

-0.361 
-0.434 

TABLE 1. Coupling coefficients and Hopf bifurcation points 

a+ 
0.452 
0.820 
- 

-0.04 
0.771 
0.714 
- 

-0.04 
-0.02 

0.700 
0.402 
- 

-0.04 
-0.04 

In  table 1 we list these parameters for several modes and for R = 0.01, 0.1 and 

Finally we convert the system (4.22) and (4.23) to an autonomous one by the 
1 cm, calculated on the basis that  e / w q  = 0.1. 

transformation 
n n , (4.25) KO  id^, A = A  eiiG-ifl)T 

yielding = - i ~ o A o - o l o A o - i A ~ + ~ ,  (4.26) 
dr  

= - ip, A , -a, A ,  - iAo A ,*, (4.27) 

where p0 = d, p, = @-in). (4.28) 

Note from (4.21) and (3.31) that the scale of a, decreases with n for large n, while that 
of a, does not. It is in this normalized sense that the two modes are said to be 
comparable. 

dA, 
dt 

Let us rewrite (4.26) and (4.27) in Cartesian form by letting 

A ,  = Co+iSo, A ,  = C,+iS,, (4.29) 

then -- dCo - -ao C, +po so + 2C, s, -q,  (4.30) 
dr  

2 = -poCo-aoSo-(C2,-S~)+p,  (4.31) 
ds 
dr 

(4.32) dC 
dr  

ds 
d r  

-- - -an Cn + p, 8, + (So C, - Co Sn),  

2- - -a,  s, -p, C, - Go c, -sos,. (4.33) 

This is the same autonomous system as discussed - by Miles (1984) whose analysis for 
a special case (01, = a. = a, p, = = p, i.e. A, = 0) did not yield any chaotic 
response. For capillary-gravity waves in a vertically oscillating tank, Gu & Sethna 
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(1987) deduced a similar set of equations without forcing and found a variety of 
chaotic responses if the above restrictions are removed. Since in nature finite phase 
mismatch most likely occurs, we shall relax Miles' instability analysis and allow 
imperfect resonance. For simplicity we also assume q = 0 so that F = p + iq = 1 from 
here on. 

The amplitude evolution equations (4.30)-(4.33) are deduced for the same time 
range 7 = cut = O(1).  Because this is also the timescale of damping, the solution is 
expected to approach an asymptotic state (the attractor) a t  the end of this time 
range. While a higher-order theory can in principle extend the time range of validity, 
little substantive change is expected in the asymptotic state, according to  the centre 
manifold theorem (Carr 1981 ; Rand & Armbruster 1987). Hence this type of low- 
order evolution equation, which can be derived by a variety of means (multiple-scale 
expansion (Miles 1984), method of averaging (Gu & Sethna 1987) or centre manifold 
and normal form theories (Meron & Procaccia 1986)), has been the customary basis 
for numerical computations for the asymptotic states (limit cycles, tori and chaos). 
In the case of standing waves in a tank, such theories have been found to  agree with 
experiments reasonably well (Meron & Procaccia 1986 ; Simonelli & Gollub 1989 ; 
Kambe & Umedi 1990). 

5. Fixed points and linearized instability for two-mode interaction 

is a t  
For the dynamical system (4.30)-(4.33) there are two fixed points. The first {Xj')} 

Physically, this is an equilibrium state where the external forcing on the breathing 
mode is balanced by damping, while the distortion mode is a t  rest. As was shown by 
Miles, infinitesimal disturbances (Ch, 8;) and (c',, 8;) are uncoupled. The disturbance 
of the breathing mode is always stable while that  of the distortion mode n is 

stable 
unstable if (ai+/3i) (a2,+E) 2 1.  

The second fixed point {Xy'} can be conveniently expressed in polar form 
Go + is, = pa eieo, en + is, = p n  eien ; 

~ 0 ~ 8 0  = (PoP i -Pn&) /Po ,  sine0 = ( a o P ~ + a n P 2 , ) / P o .  

(5.3) 

(5.4) 

(5 .5)  

The range of parameters will be chosen so that the square roots are real, then the 
positive branches are taken. The linearized stability of {Xiz)}  leads to the following 
eigenvaluc problem : 

4 h 4 +  J3h3+ JzA2+ Jlh+ J, = 0, 
where J , = 4 ( C , + f l n ) r > 0 ,  

I then Po = (a",P2,)t, 

P n  = { - a o a n + P o P n + [ 1 - ( a o ~ n + a n ~ o ) ~ l ' > ' ,  
cos 28, = [ 1 - (a, /3, + a, /3,)2]1", sin 28, = - a, b,  -a, Po, 

J1 = 4(01o+a,)(C2,+S2,)+2an(cci+/3~) > 0, 
J, = 4 ( C 2 , + ~ 3 + a ~ + / 3 ~ + 4 u 0 u ,  > 0, 

J3 = 2(a, +a,) > 0, 
J4 = 1,  
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with 

According to the Routh-Hurwicz criterion the linearized system near {X:,'} is stable 
if 

J, > 0, J1 > 0, J3 J4 > 0, (5.6a-c) 

and P = Jl( J, Jj - J1 J,) - J, J i  > 0. (5.6d) 

The first three conditions are always satisfied. But the last, (5.6d), is not satisfied for 
certain parameter ranges. By calculating P us. d for fixed R and n, we can find the 
range of instability 52- < d < B+. The threshold values of Q- and B, are listed also 
in table 1.  

By taking d to be near either threshold we have calculated all four eigenvalues 
from (5.5) and found the thresholds to be Hopf bifurcation points. Although 
approximate analyses near them can be carried out in principle with considerable 
computations, we have chosen to integrate the nonlinear system directly, by an 
Adams-Bashforth scheme with error allowance equal to Only the phase 
portraits of C, us. So will be shown ; all for very large 7 when they have settled on the 
attractor. All power spectra are computed for C, with 8192 sampling points. Before 
describing these numerical experiments, we recall that the global behaviour of the 
system is an attractor since the Lie derivative of (4.30)-(4.33) is always negative 
(Miles 1984) : 

- _  - -2(a0+a,) < 0 where {Xi} = {Co~So ,Cn ,Sn} .  a x  
axi (5.7) 

The following energy conservation law is also derivable from (4.26) and (4.27): 

d 
-((IAo12+IAnI') dt = -2(aolA,12+a,lA,12)+ ( ;FA$+*) .  ( 5 . 8 )  

Vanishing of the right-hand side defines an ellipsoid in the four-dimensional phase 
space of {Xi}: 

1 
- [(Co + 
a0 

+ (So -&)'I + l/a,(C; + 8;) = 1/4a0. (5.9) 

Similar to Lorenz's (1963) reasoning on his attractor, on any hypersphere large 
enough to contain the above ellipsoid, all phase trajectories must be attracted 
inward. 

6. Long-time interaction between two modes 
We select for illustration a small bubble R = 0.01 cm. The breathing mode 

frequency o lies between u, and us. Only the interaction between w and 2u4 is of 
interest, since there is a region of instability 0.049 < d < 0.820. Note that the other 
neighbouring modes are either stable (n = 5 )  or mismatched in phase by a large 
amount (n = 3) when interacting singly with the breathing mode. Leaving the case 
of multi-mode interactions until the next section, we consider w and 2g4 only. 

The initial data are set to be C, = So = 8, = 0, C, = 1.0. When d is not in the 
range of instability, the flow is always attracted to the equilibrium point. Decreasing 
from B, we first get a limit cycle. Figure 1 shows a sample phase portrait (Co, So)  and 
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FIGURE 1. d = 0.750, just below the upper Hopf bifurcation point. 
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FIGURE 2. fi = 0.410, the threshold of period doubling. 
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FIGURE 3. fi = 0.371, the threshold of period quadrupling. 

the power spectrum of C,  for d = 0.75. At d = 0.41, the first period-doubling 
appears, see figure 2. The second period-doubling occurs at d = 0.371, see figure 3. 
The flow is chaotic in the range of 0.049 < d < 0.360 except for a narrow window 
which resides in 0.196 < d < 0.20073. A sample phase portrait and power spectrum 

CO f 
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FIGURE 4. d = 0.300, chaotic state. 

7 

FIGURE 5. Lgaponov exponents 2:s. 7 for d = 0.300. The largest exponent is positive. 

for fi = 0.30 are shown in figure 4. The asymptotic state corresponds to a strange 
attractor, as is evident by the Lyaponov exponents plotted in figure 5. For this case 
the Lyaponov dimcnsion is 1.66 according tJo the definition by Kaplan & Yorke 
(1979). In the centre of the window the typical flow is a periodic state with 
fundamental frequencies 0.61, 1.22 and 1.83 ; its sample phase portrait and spectrum 
are shown in figure 6. 

To see the flow near the lower boundary SZ- we plot a time series of C, for SZ = 
0.052 in figure 7 .  Much of the time it is approximately periodic with slowly growing 
amplitude. After a long interval it bursts and collapses suddenly to a small 
amplitude, and then oscillates, again with slow amplification. This intermittent 
sequence of slowly amplifying oscillations and sudden bursts is erratic. The closer d 
is to Q-, the longer the separation between bursts becomes. 

The general pattern of bifurcations and chaos remains the same for other R and n 
as long as just one distortion mode interacts with the breathing mode. 
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FIQURE 6. Periodic state in a window. 
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FIGURE 7. Time series for C, a t  d = 0.052, very near the lower Hopf bifurcation point. 
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7. Long-time interaction between three modes 
To examine a more complex and less idealized case, we consider a larger bubble 

with R = 0.1 cm and allow two distortion modes to have non-zero initial values. The 
two modes will then be expected to interact with each other indirectly through the 
breathing mode. It is interesting to see when and how bifurcations of the three-mode 
system evolve. 

Using (4.21) and defining further: 

A ,  = a,/T(&, &,"): = B, ei(B- 'm)T'2,  X, = wTA,, 
we rewrite the evolution equations (4.18) and (4.19) as follows: 

- -  
12- - -[a, ++i(52 - A n ) ]  a,  -iA,A:, dA 
dr 

- -  5 = - [a, + +i (52 - A,)] a,  - iSA , A;, 
d r  
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FIGURE 8. d = 0.600. jus t  below the upper Hopf bifurcation point. 
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FIGCRE 9. d = 0.360. t he  threshold of yuasi-prriodir torus ~ i t h  two  frequencies. Scdes of phase 

portrait arc' tlistorted. 

where I; = Qr/Q:. AS = Q,/Q,. (7 .3)  

We omit the details of the fixed points and the linearized instability analysis, both 
of which would involve some numerical work. Instead we integrate the dynamical 
system with six real unknowns directly. By numerical experiments with all pairings 
of distortion modes for R = 0.01, 0.1 and 1 cm. we have found that  unless their SZ- 
ranges of two-mode instability, as  listed in table 1, intersect. the flow is always 
attracted to  an equilibrium state. Take R = 0.1 for example. There is no chaos if ( n .  
rn) is any of the following pairs. ( 9 , l l ) .  (9, le), (9. 13). (10, l l ) ,  (10,12). (10,13). Only 
in the region of intersection ran the three-mode interaction exhibit bifurcation and 
chaos. 

We discuss below the results for n = 10, m = n- 1 = 9 with equal initial values 
A ,  = 0, A ,  = A ,  = 0.5. It follows from (3.31) that  I/' = 0.727 - and S - = 0.88, both of 
which are not far from unity. Crudely speaking on a, z a,. A, z A, and R z S z 
1;  therefore the two neighbouring modes might be expected to  have similar 
behaviour while A ,  would behave as if there were only one distortion mode A ,  (or 
A , )  with the initial value 1. 

The fi-domain of linearized instability for the two-mode system (0 .9)  is 0.03 < 
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FIGURE 10. d = 0.35901, threshold to  chaos with three incommensurable periods. 
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FIGURE 11. d = 0.3, chaos. 

d < 0.77 ,  which includes the instability region of the two-mode system (0,lO): 
0.035 < d < 0.714. 

As d is reduced below 0.714, a limit cycle appears. A typical phase portrait is 
shown for d = 0.600 in figure 8. The dominant frequency is near f = 0.201. Near 
d = 0.36 the limit cycle bifurcates to a quasi-periodic torus, which is characterized by 
two frequencies (0.14 and 0.201) whose ratio is not rational; the third frequency 
0.402 is the second harmonic of 0.201. The phase trajectory in figure 9 fills a 
broadbanded circuit. At d = 0.35901, the flow becomes chaotic, see figure 10. Note 
that the power spectrum shows three strong frequencies. 

For the remainder of the range 0.035 < Q < 0.359 the flow is chaotic. A sample 
case for d = 0.3 is shown in figure 11.  Also when d is close to 52- = 0.035, the typical 
time series is a long stretch of amplifying oscillations followed by sudden burst, and 
then a long stretch of amplifying oscillations again, etc., see figure 12. 

In summary, unlike the two-mode intcraction where the path from 0, t o  chaos is 
a Feingenbaum sequence of period-doublings, the case of the three-mode interactions 
belongs to the Ruelle-Takens class in that the limit cycle bifurcates first to a quasi- 
periodic torus and then to  chaos (Berge, Pomeau & Vidal 1984). Qualitatively the 
same rcsults are found for R = 0.01 and 1 cm. 

Combined with the theory of Benjamin & Ellis (1990), our results for chaotic 
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FIGURE 13. Sample drift velocity. 
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bubble oscillation clearly provide one mechanism for erratic dancing of a bubble in 
sound. From their general result (Benjamin &, Ellis 1990, equation (6.4)) the mean 
drift velocity, to the leading order, is 

(7.5) 

for two aligned modes, where the overline represents averaging with respect to the 
period of oscillation and en is related to our amplitude a,  by 

E n n  = a ePiunt+*. (7.6) 

For large enough n, cr,, - cn+l = O(e) is small so that 
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In terms of our normalization, it can be shown that 

Using the calculated results for the case of figure 11,  i.e. for R = 0.1 cm, d = 0.3 and 
n = 0, the factor W, = (CnCn+,+DnDn+,) is shown in figure 13. 

8. Concluding remarks 
Based on an asymptotic approximation that permits interacting modes to attain 

comparable amplitudes, we have deduced the evolution equation for the resonant 
interaction of the breathing mode with one or several distortion modes. Since the 
frequency mismatch can be of O(s ) ,  resonance occurs more easily, while the growth 
is faster, than the mechanism studied by Hall & Seminara (1980). We have shown 
numerically that for one distortion mode, only with imperfect phase matching can 
resonance lead to chaos. For two distortion modes, chaos occurs only in the range of 
d where both modes are unstable when interacting alone with the breathing mode. 
The routes to chaos are found to be different depending on whether one or two 
distortion modes are present. Specifically, with one distortion mode, chaos follows a 
sequence of period-doubling bifurcations, while with two it is after a quasi-periodic 
2-torus. 

Since for a large enough bubble the spectrum of distortion modes is dense, several 
distortion modes can be disturbed initially and resonate directly with the breathing 
mode and indirectly with one another. As the development of chaos may depend 
strongly on the number of modes, further investigations of many-mode interactions 
would be very worthwhile. As in the analogous cases of standing gravity or 
capillary-gravity waves in a basin, parametric resonance of two nearly degenerate 
modes can arise through cubic coupling. This could occur for two very high distortion 
modes so that the detuning is very small : cn - cn+, = O(e2w) ; and extension of the 
theory of Hall & Seminara (1980) would be needed. Because of the high degree of 
multiplicity at high n,  implied by (3.12b), consideration of many modes would be 
even more important there. Finally a large bubble rises fast in a gravitational 
environment and may no longer be spherical ; these physical complications deserve 
further studies. 
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